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1 The first term of a geometric progression is 12 and the second term is−6. Find

(i) the tenth term of the progression, [3]

(ii) the sum to infinity. [2]

2 (i) Find the first three terms, in descending powers ofx, in the expansion of(x − 2
x
)6

. [3]

(ii) Find the coefficient ofx4 in the expansion of(1+ x2)(x − 2
x
)6

. [2]

3 The function f :x  → a + b cosx is defined for 0≤ x ≤ 2π. Given that f(0) = 10 and that f(2
3π) = 1, find

(i) the values ofa andb, [2]

(ii) the range of f, [1]

(iii) the exact value of f(5
6π). [2]

4 (i) Show that the equation 2 sinx tanx + 3 = 0 can be expressed as 2 cos2x − 3 cosx − 2 = 0. [2]

(ii) Solve the equation 2 sinx tanx + 3 = 0 for 0◦ ≤ x ≤ 360◦. [3]

5 The equation of a curve is such that
dy
dx

= 6√
(3x − 2) . Given that the curve passes through the point

P (2, 11), find

(i) the equation of the normal to the curve atP, [3]

(ii) the equation of the curve. [4]

6 Relative to an originO, the position vectors of the pointsA, B andC are given by

−−→
OA = i − 2j + 4k,

−−→
OB = 3i + 2j + 8k,

−−→
OC = −i − 2j + 10k.

(i) Use a scalar product to find angleABC. [6]

(ii) Find the perimeter of triangleABC, giving your answer correct to 2 decimal places. [2]
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The diagram shows a metal plateABCDEF which has been made by removing the two shaded regions
from a circle of radius 10 cm and centreO. The parallel edgesAB andED are both of length 12 cm.

(i) Show that angleDOE is 1.287 radians, correct to 4 significant figures. [2]

(ii) Find the perimeter of the metal plate. [3]

(iii) Find the area of the metal plate. [3]
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The diagram shows a rhombusABCD in which the pointA is (−1, 2), the pointC is (5, 4) and the
pointB lies on they-axis. Find

(i) the equation of the perpendicular bisector ofAC, [3]

(ii) the coordinates ofB andD, [3]

(iii) the area of the rhombus. [3]
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The diagram shows part of the curvey = x + 4
x

which has a minimum point atM. The liney = 5

intersects the curve at the pointsA andB.

(i) Find the coordinates ofA, B andM. [5]

(ii) Find the volume obtained when the shaded region is rotated through 360◦ about thex-axis. [6]

10 The function f :x  → 2x2 − 8x + 14 is defined forx ∈ >.

(i) Find the values of the constantk for which the liney + kx = 12 is a tangent to the curvey = f(x).
[4]

(ii) Express f(x) in the forma(x + b)2 + c, wherea, b andc are constants. [3]

(iii) Find the range of f. [1]

The function g :x  → 2x2 − 8x + 14 is defined forx ≥ A.

(iv) Find the smallest value ofA for which g has an inverse. [1]

(v) For this value ofA, find an expression for g−1(x) in terms ofx. [3]
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